97-2 大葉大學 完整版課綱 - 上課進度

上課進度		分配時數 (%)				
週次	教學內容	講授	示範	習作	實驗	其他
1	Stress-Strain Relationship for an Isotropic Elastic Material,	80	10	10	0	0
	Basic Equation of Elasticity for Isotropic Bodies					
2	Vectors and Tensors del Operator, Transformation of	80	10	10	0	0
	Coordinates					
3	Tensor operations, Quotient Law, Equations of motion	80	10	10	0	0
	Principal Stresses, stress Deviations					
4	Displacement, Velocity, Accelement Deformation Gradient,	80	10	10	0	0
	Strain Tensors, Conpatibility of Strain Components					
5	Equilibrium of An Elastic Body under zero Body Force, Navier	80	10	10	0	0
	's Equation, Applications Of the Theory Of Linear Elasticity					
6	Scalar and Vector Potentials, Equations of Motion in terms of	80	10	10	0	0
	Displacement Potentials					
7	Strain Potential, Harmonic Functions, Galerkin Vector	80	10	10	0	0
8	Biharmonic Function, Galerkin Vector and Neuber-Papkovich	80	10	10	0	0
	Function in Dynamics					
9	Biharmonic Function, Galerkin Vector and Neuber-Papkovich	80	10	10	0	0
	Function in Dynamics					
10	Plane state Stress or Strain, Airy stress Function for	80	10	10	0	0
	Two-Dimensional Problem, Airy, Stress Function in Polor					
	Coordinates, Axially Symmetric Problem					
11	Solution by means of Complex Variable, Cauchy-Riemann	80	10	10	0	0
	Conditions, Kolosov-Muskhelishvili method					
12	Example : 1.Plates Bounded by two Concentric Circles and	80	10	10	0	0
	2.Elliptic Hole in a Plate under Simple Tension (Method of					
	Conformal Transformation)					
13	Steady-State Response to Moving Load, Galilean	80	10	10	0	0
	transformation, Alternate Method of Solution				_	_
14	Viscoelastic Models, Solution by using Laplace Transformation	80	10	10	0	0
	and Inversion, Kelvin chain and general Maxwell model					
15	Hereditary Integrals, Correspondence Principle, Viscoelastic	80	10	10	0	0
	beams,					
16	Vibrations-dynamic behavior for a Viscoelastic Bar under	80	10	10	0	0
	Oscillating stress, Complex Compliances, Dissipation,					
	Relations between Compliances, Two-dimensional problems		10		•	
17	Minimization of Functional, Ealers ' Equation, Plasticity	80	10	10	0	0
	Criteria					