99-1 大葉大學 完整版課綱

基本資訊								
課程名稱	電腦輔助工程	科目序號 / 代號	1203 / NGR3032					
開課系所	工業工程與科技管理學系碩士	學制/班級	研究所碩士班1年1班					
任課教師	班正賢	專兼任別	專任					
必選修 / 學分數	選修 / 3	畢業班 / 非畢業班	非畢業班					
上課時段 / 地點	(二)567 / H550	授課語言別	中文					

課程簡介

提昇設計能量,縮短設計時程,降低製造成本,以提昇產品競爭能力,是當前製造業努力的目標,而「電腦輔助工程」(CAE, Computer Aided Design)為此波工業升級不可或缺之重要工具。

「電腦輔助工程-ANSYS」主要是以有限元素法(FEM, Finite Element Method)為演算核心的工程結構分析之應用工具,目前已廣泛應用於 航太工業、汽車業、造船業、建築業、機械業及一般民生工業(如塑膠工業)等產業。分析之範圍包括 結構靜力分析、動態分析、振動頻率分析、Buckling Analysis、破壞分析、疲勞分析、複合材料結構分析、熱力分析、流體場分析、電磁場分析及最佳化設計等。

本課程主要以ANSYS為工具,學習如何應用CAE驗證過去所學之相關力學問題及進一步分析產業所遭遇之設計問題。

課程大綱

第一章、CAE、FEM及ANSYS簡介

第二章、結構之靜態分析

第三章、Finite Element Method & Programming? 1 Dimension

第四章、1D、2D(、3D)之有限元素模型之建立

第五章、CAD與CAE之連結

第六章、APDL(ANSYS Parametric Design Language) 之撰寫

第七章、複合材料分析

第八章、最佳化設計

第九章、挫屈(Buckling)分析

第十章、熱力暫態分析

第十一章、Fatigue

第十二章、Coupling-field Analysis

第十三章、非線性分析: 材料非線性分析及接觸問題分析

基本能力或先修課程

1.Comupter Aided Design

2.材料力學

課程與系所基本素養及核心能力之關連

- 2.2具備產業分析、經營診斷與改善創新之能力。
- 3.1具備溝通與協調之能力。
- 3.2具備團隊整合與領導之能力。
- 4.1具備瞭解全球產業脈動之能力。
- 4.2具備應用外文之能力。
- 4.3具備終身自我學習成長之能力。

成績稽核

教科書(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)							
書名	作者	譯者	出版社	出版年			
無參考教科書							

參考教材及專業期刊導讀(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)

書名 出版社 出版年

無參考教材及專業期刊導讀

上課進	度	分配時	分配時數(%)				
週次	教學內容	講授	示範	習作	實驗	其他	
1	CAE、FEM及ANSYS簡介	100					
2	結構之靜態分析	50	20	30	0	0	
3	結構之靜態分析	50	20	30	0	0	
4	Finite Element Method & Programming — 1 Dimension	80	20	0	0	0	
5	1D、2D(、3D)之有限元素模型之建立	50	20	30	0	0	
6	1D、2D(、3D)之有限元素模型之建立	50	20	30	0	0	
7	CAD與CAE之連結	50	20	30	0	0	
8	APDL(ANSYS Parametric Design Language) 之撰寫	50	20	30	0	0	
9	APDL(ANSYS Parametric Design Language) 之撰寫	50	20	30	0	0	
10	APDL(ANSYS Parametric Design Language) 之撰寫	50	20	30	0	0	
11	期中考	0	0	0	0	100	
12	最佳化設計	50	20	30	0	0	
13	最佳化設計	50	20	30	0	0	
14	複合材料結構分析	50	20	30	0	0	
15	複合材料結構分析	50	20	30	0	0	
16	熱力暫態分析	50	20	30	0	0	
17	挫屈(Buckling)分析	0	0	0	0	100	
18	期末報告	0	0	0	0	100	