98-2 大葉大學 完整版課綱

基本資訊						
課程名稱	固體力學	科目序號 / 代號	1620 / ADR5078			
開課系所	機械與自動化工程學系博士班	學制/班級	研究所博士班1年1班			
任課教師	林陽泰	專兼任別	客座			
必選修 / 學分數	選修 / 3	畢業班 / 非畢業班	非畢業班			
上課時段 / 地點	(四)789 / H467	授課語言別	中文			

課程簡介

固體力學主要在探討固體在力或其他干擾作用下產生的變形及運動,連結某質點之瞬時與原始位置間的位 移最被重視。

課程大綱

- 1. Tensor Analysis
- 2. Stress and Strain Analysis
- 3. Linear Elasticity
- 4. Solution of Problems in Elasticity by potential and Complex Variables
- 5. Elastic and Plastic Behavior of Materials
- 6. Variational Calcuius, Energy Method
- 7. Viscoelasicity
- 8. Thermoelasticity
- 9. Plasticity

基本能力或先修課程

工程力學、工程數學、材料力學

課程與系所基本素養及核心能力之關連

成績稽核

教科書(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)							
書名	作者	譯者	出版社	出版年			
無參老粉到畫							

參考教材及專業期刊導讀(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)

無參考教材及專業期刊導讀

上課進度		分配時數(%)				
週次	教學內容	講授	示範	習作	實驗	其他
1	Stress-Strain Relationship for an Isotropic Elastic Material,	80	10	10	0	0
	Basic Equation of Elasticity for Isotropic Bodies					
2	Vectors and Tensors del Operator, Transformation of	80	10	10	0	0
	Coordinates					
3	Tensor operations, Quotient Law, Equations of motion	80	10	10	0	0
	Principal Stresses, stress Deviations					
4	Displacement, Velocity, Accelement Deformation Gradient,	80	10	10	0	0
	Strain Tensors, Conpatibility of Strain Components					
5	Equilibrium of An Elastic Body under zero Body Force, Navier	80	10	10	0	0
	's Equation, Applications Of the Theory Of Linear Elasticity					
6	Scalar and Vector Potentials, Equations of Motion in terms of	80	10	10	0	0
	Displacement Potentials					
7	Strain Potential, Harmonic Functions, Galerkin Vector	80	10	10	0	0
8	Biharmonic Function, Galerkin Vector and Neuber-Papkovich	80	10	10	0	0
	Function in Dynamics					
9	Biharmonic Function, Galerkin Vector and Neuber-Papkovich	80	10	10	0	0
	Function in Dynamics					
10	Plane state Stress or Strain, Airy stress Function for	80	10	10	0	0
	Two-Dimensional Problem, Airy, Stress Function in Polor					
	Coordinates, Axially Symmetric Problem					
11	Solution by means of Complex Variable, Cauchy-Riemann	80	10	10	0	0
	Conditions, Kolosov-Muskhelishvili method					
12	Example: 1.Plates Bounded by two Concentric Circles and	80	10	10	0	0
	2.Elliptic Hole in a Plate under Simple Tension (Method of					
	Conformal Transformation)					
13	Steady-State Response to Moving Load, Galilean	80	10	10	0	0
	transformation, Alternate Method of Solution					
14	Viscoelastic Models, Solution by using Laplace Transformation	80	10	10	0	0
	and Inversion, Kelvin `chain and general Maxwell model					
15	Hereditary Integrals, Correspondence Principle, Viscoelastic	80	10	10	0	0
	beams,					
16	Vibrations-dynamic behavior for a Viscoelastic Bar under	80	10	10	0	0
	Oscillating stress, Complex Compliances, Dissipation,					
	Relations between Compliances, Two-dimensional problems					
17	Minimization of Functional, Ealers ' Equation, Plasticity	80	10	10	0	0
	Criteria					
18	Final Examination	0	0	0	0	100