98-1 大葉大學 完整版課綱

基本資訊							
課程名稱	普通物理(一)	科目序號 / 代號	1517 / MSI1013				
開課系所	材料科學與工程學系	學制/班級	大學日間部1年1班				
任課教師	李弘彬	專兼任別	專任				
必選修 / 學分數	必修 / 3	畢業班 / 非畢業班	非畢業班				
上課時段 / 地點	(二)4 / H441 (三)34 / H544	授課語言別	中文				

課程簡介

A.大葉大學材料科學與工程學系教育目標: 1. 教育學生材料科學之基礎知識,並使學生具備材料工程知識及應用之能力。

- 2. 強調理論與實務並重,教育學生具備理論分析、執行實驗與解決問題之能力。
- 3. 培養學生專業倫理與團隊精神,敦促學生持續吸取國內外材料新知,使其成為具有國際視野之專業人才
- B.大葉大學材料科學與工程學系課程特色: 1. 材料的專業基礎知識之建立
- 2. 以材料實驗及專題研究強化學生之實作能力
- 3. 輕金屬材料特色學程之設計
- 4. 電子與光電材料特色學程之設計
- 5. 課程結合專題演講及校外參訪

此課程目標為銜接高中物理教材,闡述物理各領域的核心概念,使學生具備堅實的物理基礎,以作為進一步學習高深物理的準備。(A1、A2、B1)

課程大綱

- 1. Measuring
- 2. Straight Line Motion
- 3. Vector Quantities
- 4. Two- and Three-Dimensional Motion
- 5. Newton Law of Motion
- 6. Friction, Drag, and Centripetal Force
- 7. Work-Kinetic Energy Theorem
- 8. Conservation of Energy
- 9. Center of Mass and Momentum
- 10. Rotational Motion

基本能力或先修課程

無

課程與系所基本素養及核心能力之關連

- 6.透過專題研究與產學合作的作法,培育企業所需之材料專業人才
- 7.教導學生認知專業與工程倫理,培養品格與團隊合作的精神
- 8.具有基礎的外語能力與人文素養

成績稽核

教科書(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)								
書名	作者	譯者	出版社	出版年				
無參考教科書								

參考教材及專業期刊導讀(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)

書名 出版社 出版年

無參考教材及專業期刊導讀

上課進度		分配時	分配時數(%)				
週次	教學內容	講授	示範	習作	實驗	其他	
1	課程簡介	100					
2	CH 2.Describing Motion: Kinematics in One Dimension	100					
3	CH 3.Kinematics in Two Dimensions; Vectors	100					
4	CH 4.Dynamics: Newton's Laws of Motion	100					
5	CH 5.Further Applications of Newton 's Laws	100					
6	CH 5.Further Applications of Newton 's Laws	100					
7	CH 7.Work and Energy	100					
8	CH 8.Conservation of Energy (1.5 weeks)	100					
9	CH 8.Conservation of Energy (1.5 weeks)	100					
10	期中考	100					
11	CH 9.Linear Momentum And Collisions	100					
12	CH 10.Rotational Motion About a Fixed Axis	100					
13	CH 10.Rotational Motion About a Fixed Axis	100					
14	CH 11.General Rotation	100					
15	CH 11.General Rotation	100					
16	CH 12 Static Equilibrium; Elasticity and Fracture	100					
17	CH 12 Static Equilibrium; Elasticity and Fracture	100					
18	期末考	100					