103-2 大葉大學 完整版課綱

基本資料				
課程名稱	物理冶金(一)	科目序號/代號	1108 / MSI3004	
必選修/學分數	必修 /3	上課時段/地點	(四)6 / H443、(五)56 / H443	
授課語言別	中文	成績型態	數字	
任課教師 /專兼任別	廖芳俊 /專任	畢業班/非畢業班	非畢業班	
學制/系所/年班	制/系所/年班 大學日間部 /材料科學與工程學系 /2年1班			

課程簡介與目標

課程主要介紹結構工程常採用之金屬材料之性質特性、檢測方法與原理、及原子鍵結與晶體結構。然後再 敘說凝固理論、晶體缺陷、空缺與差排的影響、最後再敘述退火處理理論。期許學生除能提升對材料科學 之基本知識外,亦希望能對常用之工程材料之特性及應用有進一步的瞭解。

課程大綱

- 1. The Structure of Metals
- 2. Analytical Methods
- 3. Crystal Bonding and Structure
- 4. Dislocations and Plastic Deformation
- 5. Element of Grain Boundaries
- 6. Vacancies
- 7.Annealing

基本能力或先修課程

英文閱讀能力、

基礎物理、

基礎化學、

材料科學與工程導論、

金屬材料。

課程與系所基本素養及核心能力之關連

- 🜒 1.具備材料科學與工程所需之數學及基礎科學的基本知識
- 🏩 2.具有材料熱力學、物理冶金、材料製程等專業知識 , 並具備材料分析的能力
- 🔹 3.具有對各種材料的基礎知識,及其可運用之範疇
- 4.具備設計規劃、執行實驗、詮釋數據、發掘問題及尋求解決方案等能力,以達到理論與實務並 重之教育目標
- 5.透過作業演練與專題實作,訓練學生具備獨立思考、分析與解決問題的能力,及培養執行書面 撰寫與口頭報告之能力

- 🌒 6.透過專題研究與產學合作的作法,培育企業所需之材料專業人才
- 🌒 7.教導學生認知專業與工程倫理,培養品格與團隊合作的精神
- 🥑 8.具有基礎的外語能力與人文素養
- 🏮 9.應培養持續學習新知的習慣與能力,並瞭解全球化的相關議題

教學計畫表						
系所核心能力	權重(%) 【A】	檢核能力指標(績效指 標)	教學策略	評量方法及配分 權重	核心能力 學習成績 【B】	期末學習 成績 【C=B*A 】
1.具備材料科學 與工程所需之數 學及基礎科學的 基本知識	15	1.具備材料科學與工程 所需之數學的基本知識 2.具備材料科學與工程 所需之基礎科學的基本 知識	講述法 個案討論	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	<u>-</u> 15
2.具有材料熱力學、物理冶金、材料製程等專業知識,並具備材料分析的能力	20	1.具有材料熱力學 、 物 理冶金 、 材料製程等 專業知識 2.具備材料分析的能力	講述法 個案討論	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	20
3.具有對各種材料的基礎知識,及其可運用之範疇	10	1.具有對各種材料的基礎知識 2.了解各種材料可運用 範疇之能力	講述法 小組討論 個案討論 專題演講	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	10
4.具備設計規劃 、執行實驗、 詮釋數據、發 掘問題及尋求 決方案等能力, 以達到理論與實 務並重之教育目 標	10	1.具備設計規劃 、 執行 實驗 、 詮釋數據 、 發 掘問題及尋求解決方案 等能力 2.能將所學知識與經驗 延伸至實務應用領域	小組討論	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	10
5.透過作業演練 與專題實作,訓 練學生具備獨立 思考、分析與 解決問題的能力 ,及培養執行書 面撰寫與口頭報 告之能力	10	1.具備獨立思考、 分析 與解決問題的能力 2.具備實驗與專題撰寫 書面報告之能力 3.具備實驗與專題口頭 報告之能力	小組討論	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	10

6.透過專題研究 與產學合作的作 法,培育企業所 需之材料專業人 才	10	1.能在專題研究或產學 合作中,累積從實驗中 所獲得的新經驗 2.能在專題研究或產學 合作中,培養材料專業 技能	講述法 小組討論 校外參訪 個案討論	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	10
7.教導學生認知 專業與工程倫理 ,培養品格與團 隊合作的精神	5	1.具備與認知工程倫理 2.具備合乎社會規範的 行為與品格 3.具備團隊合作的精神	講述法 校外參訪 專題演講	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	5
8.具有基礎的外 語能力與人文素 養	10	1.具備基礎的外語能力 2.具備人文素養	講述法 校外參訪 專題演講	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	10
9.應培養持續學 習新知的習慣與 能力,並瞭解全 球化的相關議題	10	1.具備持續學習新知的 習慣與能力 2.瞭解全球化的相關議 題	講述法 校外參訪 專題演講	小考: 15% 期中考: 25% 期末考: 30% 課堂討論: 5% 課程參與度: 20% 口頭報告: 5%	加總: 100	10

成績稽核

期末考: 30% 期中考: 25% 課程參與度: 20%

小考: 15% 課堂討論: 5% 口頭報告: 5%

書籍類別 (尊重智慧財產權,請用正版教科書,勿非法影印他人著作)				
書籍類別	書名	作者		
參考教材及專業期刊導讀	Physical Metallurgy Principles	R.E. Reed-Hill & Reza		
		Abbaschian		
教科書教科書及自編教材為課程之主要教材。		授課教師		

上課進度

週次	教學內容		教學策略
1	Introduction to Physical Metallurgy & 智財權宣導(含告知	講述法、	個案討論
	學生應使用正版教科書)		
2	The Structure of Metals	講述法、	個案討論
3	The Structure of Metals/ Characterization Techniques	講述法、	個案討論
4	Characterization Techniques	講述法、	個案討論
5	# 1 Quiz/ Crystal Binding	講述法、	個案討論
6	Crystal Binding	講述法、	個案討論
7	Crystal Binding/ Imperfections in the Atomic and Ionic	講述法、	個案討論
	Arrangements		
8	Imperfections in the Atomic and Ionic Arrangements	講述法、	個案討論
9	Midterm Exam / Imperfections in the Atomic and Ionic	講述法、	個案討論
	Arrangements		
10	Introduction to Dislocations	講述法、	個案討論
11	Introduction to Dislocations	講述法、	個案討論
12	Introduction to Dislocations / Dislocations and Plastic	講述法、	個案討論
	Deformations		
13	Dislocations and Plastic Deformations/ # 2 Quiz	講述法、	個案討論
14	Dislocations and Plastic Deformations	講述法、	個案討論
15	Vacancies	講述法、	個案討論
16	Vacancies	講述法、	個案討論
17	Vacancies/ Annealing	講述法、	個案討論
18	Annealing/ Final Exam	講述法、	個案討論