101-2 大葉大學 完整版課綱

基本資訊					
課程名稱	電腦輔助工程	科目序號 / 代號	2873 / NGR3032		
開課系所	工業工程與科技管理學系碩士	學制/班級	研究所碩士班1年1班		
任課教師	班正賢	專兼任別	專任		
必選修 / 學分數	選修 / 3	畢業班 / 非畢業班	非畢業班		
上課時段 / 地點	(二)234 / H550	授課語言別	中文		

課程簡介

提昇設計能量,縮短設計時程,降低製造成本,以提昇產品競爭能力,是當前製造業努力的目標,而「電腦輔助工程」(CAE, Computer Aided Design)為此波工業升級不可或缺之重要工具。

「電腦輔助工程-ANSYS」主要是以有限元素法(FEM, Finite Element Method)為演算核心的工程結構分析之應用工具,目前已廣泛應用於 航太工業、汽車業、造船業、建築業、機械業及一般民生工業(如塑膠工業)等產業。分析之範圍包括 結構靜力分析、動態分析、振動頻率分析、Buckling Analysis、破壞分析、疲勞分析、複合材料結構分析、熱力分析、流體場分析、電磁場分析及最佳化設計等。

本課程主要以ANSYS為工具,學習如何應用CAE驗證過去所學之相關力學問題及進一步分析產業所遭遇之設計問題。

課程大綱

第一章、CAE、FEM及ANSYS簡介

第二章、結構之靜態分析

第三章、Finite Element Method & Programming? 1 Dimension

第四章、1D、2D(、3D)之有限元素模型之建立

第五章、CAD與CAE之連結

第六章、APDL(ANSYS Parametric Design Language) 之撰寫

第七章 Workbench 與 APDL

第八章、複合材料分析

第九章、最佳化設計

第十章、挫屈(Buckling)分析

第十一章、熱力暫態分析

第十二章、Fatigue

第十三章、Coupling-field Analysis

第十四章、非線性分析: 材料非線性分析及接觸問題分析

基本能力或先修課程

1.Comupter Aided Design

2.材料力學

課程與系所基本素養及核心能力之關連

- 🤰 1.1具備科際整合、系統工程與資訊應用之專業知識。
- ı 1.2具備獨立規劃、設計與執行專題研究之能力與技術。
- 🬒 1.3具備獨立發掘、分析、解決問題之理論、方法與能力。
- 🏩 2.1具備獨立研究與論文撰寫之能力。
 - 2.2具備產業分析、經營診斷與改善創新之能力。
 - 3.1具備溝通與協調之能力。
 - 3.2具備團隊整合與領導之能力。
 - 4.1具備瞭解全球產業脈動之能力。
 - 4.2具備應用外文之能力。
 - 4.3具備終身自我學習成長之能力。

教學計畫表						
系所核心能力	權重(%)	檢核能力指標(績效指	教學策略	評量方法及配分	核心能力	期末學習
	[A]	標)		權重	學習成績	成績
					[B]	【C=B*A
]
1.1具備科際整合	20%	1. 能夠藉由文獻的蒐集	講述法	期中考: 30%	加總: 100	20
、系統工程與資		和整合與思考現狀,以	小組討論	期末考: 40%		
訊應用之專業知		系統的角度解決實際案	實務操作(實	作業: 30%		
戠。		例。	驗、上機或			
			實習等)			
			專題報告			
1.2具備獨立規劃	30%	1. 給予一個實際專題案	講述法	期中考: 30%	加總: 100	30
、設計與執行專		例,能夠將其規劃、設	小組討論	期末考: 40%		
題研究之能力與		計與執行。	實務操作(實	作業: 30%		
技術。			驗、上機或			
			實習等)			
			專題報告			
1.3具備獨立發掘	25%	1. 給予一種實際現狀,	講述法	期中考: 30%	加總: 100	25
、分析、解決問		能夠有系統的發掘、分	小組討論	期末考: 40%		
題之理論、方法		析、解決問題。	實務操作(實	作業: 30%		
與能力。			驗、上機或			
			實習等)			
			專題報告			
2.1具備獨立研究	25%	1. 給予一個小專題,能	講述法	期中考: 30%	加總: 100	25
與論文撰寫之能		夠將分析與建議有系統	小組討論	期末考: 40%		
力。		的撰寫出來。	實務操作(實	作業: 30%		
			驗、上機或			
			實習等)			
			專題報告			

成績稽核

期末考: 40% 作業: 30% 期中考: 30%

教科書(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)						
書名	作者	譯者	出版社	出版年		
ANSYS工程分析:基礎與觀念	李輝煌		高立圖書	0		

參考教材及專業期刊導讀(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)						
書名	作者	譯者	出版社	出版年		
Finite Element Analysis - Theory and Application with ANSYS	Saeed Moaveni		Prentice Hall (高立)	0		
A First Course in the	D.L. Logan			0		
Finite Element Method						
ANSYS 進階	康淵等		全華科技	0		

上課進度		分配時	分配時數(%)				
週次	教學內容	講授	示範	習作	實驗	其他	
1	CAE、FEM及ANSYS簡介	100	0	0	0	0	
2	CAE、FEM及ANSYS簡介	100	0	0	0	0	
3	Finite Element Method & Programming — 1 Dimension	60	20	20	0	0	
4	Finite Element Method & Programming - 1 Dimension	60	20	20	0	0	
5	1D之有限元素模型之建立	60	20	20	0	0	
6	2D之有限元素模型之建立	60	20	20	0	0	
7	3D之有限元素模型之建立	60	20	20	0	0	
8	3D之有限元素模型之建立	60	20	20	0	0	
9	座標系統 Coordinate	60	20	20	0	0	
10	APDL(ANSYS Parametric Design Language) 之撰寫	60	20	20	0	0	
11	APDL(ANSYS Parametric Design Language) 之撰寫	60	20	20	0	0	
12	期中考	0	0	0	0	100	
13	最佳化設計	60	20	20	0	0	
14	最佳化設計	60	20	20	0	0	
15	複合材料簡介	60	20	20	0	0	
16	複合材料分析	60	20	20	0	0	
17	複合材料分析	60	20	20	0	0	

18 期末報告

0

0

0 0

100