101-1 大葉大學 完整版課綱

基本資訊						
課程名稱	材料實驗(三)	科目序號 / 代號	1673 / MSI3090			
開課系所	材料科學與工程學系	學制/班級	大學日間部3年2班			
任課教師	宋皇輝	專兼任別	專任			
必選修 / 學分數	必修 / 1	畢業班 / 非畢業班	非畢業班			
上課時段 / 地點	(二)789 / H350	授課語言別	中文			

課程簡介

A.大葉大學材料科學與工程學系教育目標:

- 1.教育學生材料科學之基礎知識,並使學生具備材料工程知識及應用之能力。
- 2.強調理論與實務並重,教育學生具備理論分析、執行實驗與解決問題之能力。
- 3.培養學生專業倫理與團隊精神,敦促學生持續吸取國內外材料新知,使其成為具有國際視野之專業人才。
- B.大葉大學材料科學與工程學系課程特色:
- 1.材料的專業基礎知識之建立
- 2.以材料實驗及專題研究強化學生之實作能力
- 3.輕金屬材料特色學程之設計
- 4.電子與光電材料特色學程之設計
- 5.課程結合專題演講及校外參訪

經由課堂講授與實驗操作使學生認識基本的光電量測實驗方法,進而利用這些實驗方法量測材料特性,瞭解材料的光學特性,以及材料中光與電的交互作用。(A2、B2)

課程大綱

單元一:光源光譜特性量測實驗

單元二:光柵繞射實驗 單元三:雷射光源特性

單元四:光的偏極化與布魯斯特角量測

單元五: Fabry-Perot干涉儀

單元六:低溫電阻量測

單元七:空間濾波與傅氏光學單元八:半導體特性量測單元九:麥克森干涉實驗單元十:光電導量測實驗單元十一:光激螢光實驗

單元十二:霍爾效應量測實驗

基本能力或先修課程

材料實驗(一)、材料實驗(二)

課程與系所基本素養及核心能力之關連

- ı 1.具備材料科學與工程所需之數學及基礎科學的基本知識
- 🏩 2.具有材料熱力學、物理冶金、材料製程等專業知識 , 並具備材料分析的能力
- 🌑 3.具有對各種材料的基礎知識 , 及其可運用之範疇
- 4.具備設計規劃、執行實驗、詮釋數據、發掘問題及尋求解決方案等能力,以達到理論與實務並 重之教育目標
- 5.透過作業演練與專題實作,訓練學生具備獨立思考、分析與解決問題的能力,及培養執行書面 撰寫與口頭報告之能力
 - 6.透過專題研究與產學合作的作法,培育企業所需之材料專業人才
- 瀪 7.教導學生認知專業與工程倫理 , 培養品格與團隊合作的精神
 - 8.具有基礎的外語能力與人文素養
 - 9.應培養持續學習新知的習慣與能力,並瞭解全球化的相關議題

教學計畫表						
系所核心能力	權重(%)	檢核能力指標(績效指	教學策略	評量方法及配分	核心能力	期末學習
	[A]	標)		權重	學習成績	成績
					[B]	【C=B*A
]
1.具備材料科學	20%	1.具備材料科學與工程	講述法	課程參與度: 30%	加總: 100	20
與工程所需之數		所需之數學的基本知識	實務操作(實	同儕互評: 5%		
學及基礎科學的		2.具備材料科學與工程	驗、上機或	口頭報告: 10%		
基本知識		所需之基礎科學的基本	實習等)	書面報告: 20%		
		知識	小組合作	實驗操作: 20%		
				助教觀察紀錄:		
				15%		
2.具有材料熱力	10%	1.具有材料熱力學、物	講述法	課程參與度: 30%	加總: 100	10
學、物理冶金、		理冶金、材料製程等專	實務操作(實	同儕互評: 5%		
材料製程等專業		業知識	驗、上機或	口頭報告: 10%		
知識,並具備材		2.具備材料分析的能力	實習等)	書面報告: 20%		
料分析的能力			小組合作	實驗操作: 20%		
				助教觀察紀錄:		
				15%		

3.具有對各種材	20%	1.具有對各種材料的基	講述法	20		
料的基礎知識,		礎知識	實務操作(實	同儕互評: 5%		
及其可運用之範		2.了解各種材料可運用	驗、上機或	口頭報告: 10%		
疇		範疇之能力	實習等)	書面報告: 20%		
			小組合作	實驗操作: 20%		
				助教觀察紀錄:		
				15%		
4.具備設計規劃	20%	1.具備設計規劃、執行	講述法	課程參與度: 30%	加總: 100	20
、執行實驗、詮		實驗、詮釋數據、發掘	實務操作(實	同儕互評: 5%		
釋數據、發掘問		問題及尋求解決方案等	驗、上機或	口頭報告: 10%		
題及尋求解決方		能力	實習等)	書面報告: 20%		
案等能力,以達		2.能將所學知識與經驗		實驗操作: 20%		
到理論與實務並		延伸至實務應用領域		助教觀察紀錄:		
重之教育目標				15%		
5.透過作業演練	10%	1.具備獨立思考、分析	實務操作(實	課程參與度: 30%	加總: 100	10
與專題實作,訓		與解決問題的能力	驗、上機或	同儕互評: 5%		
練學生具備獨立		2.具備實驗與專題撰寫	實習等)	口頭報告: 10%		
思考、分析與解		書面報告之能力	小組合作	書面報告: 20%		
決問題的能力,		3.具備實驗與專題口頭	學生上台報	實驗操作: 20%		
及培養執行書面		報告之能力	告	助教觀察紀錄:		
撰寫與口頭報告				15%		
之能力						
7.教導學生認知	20%	1.具備與認知工程倫理	實務操作(實	課程參與度: 30%	加總: 100	20
專業與工程倫理		2.具備合乎社會規範的	驗、上機或	同儕互評: 5%		
, 培養品格與團		行為與品格	實習等)	口頭報告: 10%		
隊合作的精神		3.具備團隊合作的精神	小組合作	書面報告: 20%		
			學生上台報	實驗操作: 20%		
			告	助教觀察紀錄:		
				15%		

成績稽核

課程參與度: 30% 書面報告: 20% 實驗操作: 20% 助教觀察紀錄: 15% 口頭報告: 10% 同儕互評: 5%

教科書(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)

書名 作者 譯者 出版社 出版年

無參考教科書

參考教材及專業期刊導讀(尊重智慧財產權,請用正版教科書,勿非法影印他人著作)						
書名	作者	譯者	出版社	出版年		
Application in Electro Optics	- Leo Setian		Prentice Hall	2002		
Optoelectronics and Photonics:Principles and Practices	S. O. Kasap		Prentice Hall	2001		

上課進度		分配時數(%)				
週次	教學內容	講授	示範	習作	實驗	其他
1	原理講授	100	0	0	0	0
2	原理講授	100	0	0	0	0
3	原理講授	100	0	0	0	0
4	光源光譜特性量測實驗	0	0	0	100	0
5	光柵繞射實驗	0	0	0	100	0
6	麥克森干涉實驗	0	0	0	100	0
7	光的偏極化與布魯斯特角量測	0	0	0	100	0
8	金屬高低溫電阻量測	0	0	0	100	0
9	原理講授	100	0	0	0	0
10	原理講授	100	0	0	0	0
11	原理講授	100	0	0	0	0
12	穿透光譜量測實驗	0	0	0	100	0
13	霍爾效應量測實驗	0	0	0	100	0
14	van der Pauw 電阻率量測	0	0	0	100	0
15	半導體-金屬接面傳輸特性量測	0	0	0	100	0
16	光電導量測實驗	0	0	0	100	0
17	光激螢光實驗	0	0	0	100	0
18	期末考	0	0	0	100	0